

How to Select Carbon Brushes for Motors and Generators

Contents	
Grade Selection Brush Grade Families Grade Characteristic Definitions	Page 1 3
Special Brush Types Laminated Brushes Fluted Brushes Pre-Radius Brushes Rubber Hardtop Brushes Surface Cleaning Brushes Surface Rounding Brushes	5 5 6 6 6 6
Engineered Brush Grades Electrographitic	6 9 10
Brush Request Form	11 12

Brush Grades Families

Brush grades are usually classified according to the manufacturing processes and the types of carbons and other ingredients used. The four main brush grade families are:

> Carbon Graphites Electrographites Graphites Metal Graphites

Carbon Graphite Brushes

Carbon graphite brushes made their entrance early in the brush industry. They are high-strength materials with a pronounced cleaning action. Carbon graphite brushes are generally limited to lower current densities 45 amps/in² (7 amps/cm²) and are used on older, slower speed machines that reach maximum surface speeds of approximately 4000 feet/minute (20.3 m/sec). The high friction generated with this type of material also makes it unattractive for present day use on commutators, but does

have use as contacts and as a base for metal impregnated grades.

Electrographitic Brushes

Electrographitic brushes are baked at temperatures in excess of 2400°C that changes the material physically to a more graphitic structure. Apparent density, strength, hardness, and resistivity can be closely controlled through raw material composition and processing to achieve superior commutating ability while providing long life.

The high processing temperature volatizes impurities which makes electrographitic brushes generally free from abrasive ash. Therefore, commutators must have undercut mica since very little mechanical wear results.

Electrographitic materials in general are fairly porous which permits treatment with various organic resins or inorganic materials. The treatments increase strength and lubricating ability which generally increases brush life significantly at high operating temperatures and at lower humidity.

Treatments can also permit electrographitic materials to operate satisfactorily in a variety of contaminated atmospheric environments.

Friction characteristics with electrographitic materials can be controlled through raw material combinations before graphitization and also by treating the finished product with organic resins. Brush face temperature is a primary influence in determining the coefficient of friction as shown by the typical curve of coefficient of friction vs. temp chart.

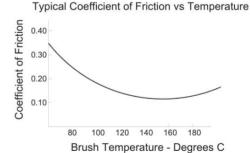


Figure 1

Electrographitic brushes are generally capable of continuous operation at 80 amps/in² (12.4 amps/cm²) and surface speed of 7000 feet/minute (35.6 m/sec). Intermittent operation at higher values is not uncommon. They are widely used in the industrial, transportation, mining and aerospace industries on both AC and DC machinery.

Grade Characteristic Definitions

Graphite Brushes

Graphite brushes are composed of natural or artificial graphite bonded with resin or pitch to form a layered brush material. Natural graphite usually contains ash which gives the brushes an abrasive or cleaning action. Artificial graphite generally does not contain ash nor does it have the flaky structure of natural graphite.

Graphite brushes are characterized by their controlled filming and excellent riding qualities on both commutators and slip rings at brush current densities 45 to 65 amps/in² (7 to 10 amps/cm²). They are not capable of sustained operation at higher current densities like electrographitic materials; however, higher surface speeds are often permitted with some type of graphite materials.

The fast filming properties of graphite brushes is very beneficial in protecting the commutator or slip ring during operation in contaminated atmospheres such as those seen in paper mills. Their low porosity and higher density are valuable in reducing commutator threading often encountered in contaminated environments.

Metal Graphite Brushes

Metal graphite brushes are generally made from natural graphite and fine metal powders. Copper is the most common metallic constituent, but silver, tin, lead and other metals are sometimes used.

Metal graphites are ideal for a variety of applications because of their low resistivity. Metal graphites are used on commutators of plating generators where low voltage and high brush current densities are encountered. They operate on rings of wound rotor induction motors where high brush current densities are also common. Metal graphites are used for grounding brushes because of their low contact drop.

The following table describes some general applications where metal graphite brushes are used.

Forklift and battery truck motors rated 24 – 72 volts Battery charging and welding generators					
rated 24 – 72 volts					
Slip rings at brush current densities 100 amps/in ² (15.5 amps/cm ²) or less					
Plating generators rated 6 – 24 volts Slip rings at brush current densities less than 125 amps/in ² (19.4 amps/cm ²)					
DC machines rated less than 6 volts. Slip rings at brush current densities 150 amps/in² (23.3 amps/cm²) or less					
1					

The characteristics of the most widely used brush grades are shown in the tables on pages 6 - 10. The following definitions and explanations will help you to interpret these tables.

Specific Resistance

Unless otherwise specified, specific resistance (or resistivity) in ohm-inches (micro ohm-meters) is equal to the resistance that a specific volume of brush material offers to the passage of current. Specific resistance is measured in the length direction of the brush, since resistance in the direction of width or thickness may be considerably different. Specific resistance is calculated from measurements on a test sample as follows:

R = $(E \times W \times T) / (I \times L)$ (English) R = $(E \times W \times T \times 10^{-3}) / (I \times L)$ (Metric)

Where R = the specific resistance in ohm-inches (micro ohm-meters)

E = voltage drop over length "L"

I = amps of current passed through the sample

W = width of sample in inches (millimeters)

T = thickness on sample in inches (millimeters)

L = that portion of the length, in inches (millimeters), over which the voltage drop "E" is measured

Apparent Density

For a brush material, the apparent density (also known as bulk density) is equivalent to its weight in grams divided by its volume in cubic centimeters. Density must be considered jointly with other brush characteristics in estimating brush quality.

Abrasiveness

The ability of the brush to prevent excessive build up of film usually caused by corrosive or oily atmospheres is called the abrasiveness or "polishing action". The abrasiveness of a brush may be influenced by its hardness, grain structure and ash content. The brushes are classified according to abrasiveness as follows: "Low" indicates very little abrasiveness (commonly referred to as "non-abrasive" by the trade), "Medium" indicates some polishing action, "High" indicates pronounced polishing action which is usually obtained by using a material with high ash content or by the addition of a polishing agent.

Contact Drop

Contact voltage drop for the brushes listed in this brochure are approximate values only and represent the total voltage drop (positive plus negative) obtained on a copper ring at 50 amps/in² (7.75 amps/cm²) while rotating at 2500 f/m (12.7 m/sec).

They are classified as follows:

Contact Drop	Volts				
Very High	1.7 and above				
High	1.2 to 1.7				
Medium	0.6 to 1.2				
Low	Below 0.6				

Current Carrying Capacity

The actual current carrying capacity of a brush is widely influenced by operating conditions such as type of ventilation, continuous or intermittent duty, speed and other factors. The brush grade current ratings are conservative, some allowance having been made for overloads. Brushes have been run at currents considerably above those listed in the grades table. Metal graphites, for example, have been operated at 180 amps/in² (27.9 amps/cm²) on certain high current generators. Electrographitic brushes have been operated at 100 amps/in² (15.5 amps/cm²) on similar equipment with reasonably good results.

The current carrying capacity of a brush depends on the operating temperature. On well ventilated machines, having small brushes, with large surface area in proportion to their volume, and where brushes cover only a small percentage of the commutator or ring surface, conventional current densities can usually be doubled for short periods without seriously jeopardizing the performance. However, increasing current density without making provisions for maintaining a low brush temperature may severely reduce brush life. The brush current density of a given machine can be calculated as follows:

D = I / ($\frac{1}{2}$ N x W x T) * for commutator machines

 $D = I / (N \times W \times T) * for slip rings$

D = brush current density in amps/in² (amps/cm²)

I = total current in amps*

*Armature amps for commutator machines

*Rotor or secondary amps for slip ring machines

N = total number of brushes on a commutator or the number of brushes on an individual ring

W = width of the brush in inches (cm)

T = thickness of the brush in inches (cm)

Maximum Speed

The highest peripheral or surface speed in feet per minute (meters per second) recommended for the collector or commutator on which the brush is to ride is referred to as the maximum speed. The maximum speed depends not only upon the characteristics of the brush material, but also upon the spring force, current density, type of brush holder, brush angle, condition of the ring or commutator, atmospheric conditions, etc. Consequently, the maximum speed, conventionally listed as a brush characteristic, is only an approximation.

Friction Coefficients

Brush friction is influenced by many variables including brush temperature, spring force, current, atmospheric conditions, mechanical conditions, ring or commutator materials, surface films, speed and other factors. The slip ring/commutator surface even under favorable conditions is continually undergoing changes caused by oxidation, abrasion and moisture.

Friction chatter, noise and associated brush wear can be accelerated with certain brush holder configurations. This is especially true under conditions of light loads and lower brush temperatures when the coefficient of friction is relatively high (refer to Fig. 1). Specific brush grades are used to lessen the severity of friction chatter under these conditions. Friction between the brush and rotating surface can be a major source of heat generation that causes serious temperature related problems. Commutators can distort, slip rings can move, and brush wear can become excessive when the coefficient of friction becomes too high.

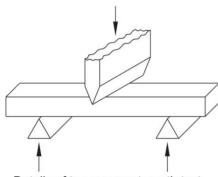
The brushes are classified as follows:

Friction	Friction
Classification	Coefficient
High	0.40 and above
Medium	0.22 to 0.40
Low	Below 0.22

Transverse Strength

The standard sample is supported near the ends on two knife edges as shown in Figure 2. A third knife edge presses on the top of the sample midway below the two supporting edges. The force is increased on the top knife edge until the sample breaks. The transverse strength is computed by using the beam formula, also called 3 Point Method:

 $S_t = 3 \times P \times L / (2 \times W \times T^2)$


S_t = transverse strength in PSI (Kgf/cm²)

P = the total force in pounds (Kgf) applied at the upper knife edge

L = distance between supports in inches (cm)

W = width of sample in inches (cm)

T = thickness of sample in inches (cm)

Details of transverse strength test

Figure 2

Special Brush Types

Laminated Brushes

There are times when a laminated design brush is desired. The laminated "L" series has been developed to help the designer and ultimate user to obtain more effective performance from his commutator-type machine (where conditions warrant a laminated brush).

There are two types of laminated brushes. The first laminated style brush is a composite assembly of two or more grades of electrographite/graphite materials that provide a slight polishing action to combat contaminated environments. These brushes improve commutation, reduce commutator wear and provide better brush life, where contamination is a concern. Brief application descriptions are listed in Table I.

Brush Grade	Description and Application Recommended for:
L932	A good commutating grade with slight polishing action operational range is 50 to 75 APSI (7.75 APSC to 11.6 APSC).
L944	Treated grade fir improved life.
L963	A good commutating grade with slight polishing action, also treated for low humidity protection.
L964	Stronger base material for improved life.
L966	Similar to L932, provides improved filming vs. L932.
L983	Low friction base material, with slight polishing action used in stubbing/leading (brush holder) configurations.

Table I

The second laminated style brush is a composite assembly of two or more grades of electrographitic materials that are of varying resistance. These brushes improve commutation, reduce commutator temperatures, and reduce commutator erosion.

Reduction of the resistivity of the various parts will reduce the commutating ability slightly, but will increase brush life. Therefore, several combinations are listed in table II. Other variations in material can be made on request. Contact the Morgan AM&T Application Engineering team for assistance.

Brush Grade	Description and Application
L351	A high commutating brush with low (contact) drop.
L352	Stronger base material for improved life.
L357	Similar to L352 but lower friction. Less subject to chatter

Table II

Fluted Brushes

Many larger machines in operation are equipped with a fluted brush face to reduce the running time necessary to get a good brush fit and commutator film.

When replacement brushes are installed a few at a time, the fluted brush does not have to be sanded in. Using a fluted brush for replacements will decrease the possibility of damaging or stripping the commutator film surface when brushes are replaced and not sanded to fit the commutator

Engineered Brush Grades

surface. On critical threading conditions, it is recommended that fluted brushes be used, as the brush allows for a quick brush fit and a more even film.

It is not necessary to remove the brush after the fluted portion is worn away, but can be operated to the normal minimum wear length.

Pre-Radius Brushes

An alternate method to form the brush to the surface of the commutator is to machine a radius (pre-radius) in the brush face. This machining applies a radius that is equal to or slightly larger than the commutator. Adding a pre-radius does not remove the need to sand in a brush, but it does significantly decreases the time needed to match the contact surface.

Rubber Hardtop Brushes

Morgan AM&T manufactures a full line of rubber hardtop brushes, also known as pads, designed to soften the impact from a rough commutator, giving longer brush life and reducing brush breakage. However, rubber hard top brushes are not a "cure-all" solution. For more information on rubber hard top brushes, refer to the technical data sheet on Rubber Hardtop Brush Applications.

Surface Cleaning Brushes

The surface cleaning brush (SCB) is a preventative maintenance tool designed to give the best possible performance in rotating equipment exposed to severe contamination. The SCB fits in the brush holder of the motor or generator and cleans the commutator and/or collector ring during operation. The SCB does not limit the apparatus output. For less aggressive cleaning, please refer to the laminated grades listed previously. For more information on SCB's, refer to the technical data sheet on Surface Cleaning Brushes.

Surface Rounding Brushes

The surface rounding brush (SRB) is another preventative maintenance tool designed to give the best possible performance in rotating equipment (that has a rough riding surface). The SRB fits in the brush holder of the motor or generator and smooths the commutator and/or collector ring to a specific roundness as the machine operates. The SRB does not limit the apparatus output since it is made of the material compatible with the other brushes. SRB's will remove metal as they slowly grind off the high areas. For more information on SRB's, refer to the technical data sheet on Surface Rounding Brushes.

Electrographitic

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in ² (kgf/cm ²)	Con- tact Drop	Fric-	Surface Speed ft/min (m/sec)	Normal Current Density A/in²	Description and Application
							(A/cm²)	Recommended for:
234	0.0020 (51)	1.48	3700 (260)	VH	L	6000 (30)	80 (12.5)	A variety of industrial and FHP machines. Good general purpose grade.
258	0.00075 (19)	1.60	2700 (191)	Н	L	6000 (30)	80 (12.5)	Copper alloy slip rings with current density up to 75 APSI and speeds up to 6000 ft/min. Also used on lightly loaded machines.
561	0.0030 (76)	1.54	1700 (120)	VH	М	8000 (41)	80 (12.5)	Where excellent commutating ability is of primary importance.
569	0.0029 (74)	1.53	1600 (113)	VH	М	8000 (41)	80 (12.5)	Contaminated atmospheres where slight polishing action is necessary.
571	0.0027 (66)	1.57	2400 (169)	VH	М	7000 (36)	80 (12.5)	Industrial and transit applications.
581	0.0022 (56)	1.61	3200 (225)	VH	М	6000 (30)	80 (12.5)	Mill-type motors and generators where normal commutation is needed.
590	0.0024 (61)	1.62	3700 (260)	VH	М	6000		Where high strength and superior commutating ability is needed.
591	0.0020 (51)	1.66	4000 (282)	VH	М	6000 (30)	80 (12.5)	Where severe mechanical conditions require a high strength grade
A451	0.0026 (66)	1.50	1400 (99)	VH	L	8000 (41)	80 (12.5)	Where humidity is low or where filming conditions are difficult.

Electrographitic (continued)

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in² (kgf/cm²)	Con- tact Drop	Fric- tion	Surface Speed ft/min (m/sec)	Normal Current Density A/in ² (A/cm ²)	Description and Application Recommended for:
AY	0.0004 (10)	1.68	3000 (211)	Н	М	4000 (20)	80 (12.5)	Steel or bronze field rings of synchronous motors and wound rotor motor rings up to 100 APSI and up to 4000 ft/min.
B344	0.0008 (20)	1.65	3700 (260)	Н	М	6000 (30)	80 (12.5)	Low voltage battery lift trucks where low contact drop is required.
D	0.0005 (18)	1.65	4200 (296)	Н	М	5000 (25)	80 (12.5)	Steel and cast iron slip rings.
DE2	0.0021 (53)	1.64	3700 (260)	VH	L	8000 (41)	80 (12.5)	Smaller diesel-electric locomotive main generators and auxiliary equipment motors and generators.
DE25	0.0025 (64)	1.69	4200 (359)	VH	L	10000 (51)	80 (12.5)	Traction and hoist motors operating under severe conditions of temperature and low humidity.
DE3	0.0020 (51)	1.62	4500 (317)	VH	L	8000 (41)	80 (12.5)	Transit traction motors.
DE7	0.0025 (58)	1.67	4400 (310)	VH	L	10000 (51)	80 (12.5)	Traction motors and wheel motors in off highway vehicles where high loads and low humidity are present. Also suitable for motors in transit applications.
DE7000	0.0020 (51)	1.67	5500 (387)	VH	L	10000 (51)	80 (12.5)	Diesel-electric traction motors providing good commutation and long life.
DE8	0.0020 (51)	1.70	5000 (352)	VH	L	8000 (41)	80 (12.5)	Larger diesel-electric locomotive main generators, and other auxiliary equipment motors and exciters.
DE869	0.0013 (36)	1.71	4000 (282)	Н	М	6000 (30)	70 (11)	Brass collector rings, also used for medium commutating service.
DE9000	0.0020 (51)	1.68	5500 (387)	VH	L	10000 (51)	80 (12.5)	High speed locomotive traction motor applications.
F799	0.0035 (76)	1.65	2800 (197)	VH	М	7000 (36)	70 (11)	Applications where friction chatter is encountered.
G	0.0013 (36)	1.65	3300 (232)	VH	М	6000 (30)	70 (11)	Medium-duty commutating service.
N19	0.0025 (58)	1.61	2800 (197)	VH	L	8000 (41)	75 (12)	Medium to low current density applications with normal commutation requirements.
N38	0.0020 (51)	1.70	5000 (352)	VH	L	8000 (41)	80 (12.5)	Industrial generators and exciters where long life is necessary. Exceptional ability to maintain film under lightly loaded conditions.
N39	0.00075 (19)	1.77	4700 (331)	VH	L	10000 (51)	80 (12.5)	Slip rings where a stabilized film is critical and long life is necessary.
N44	0.0024 (61)	1.50	1500 (106)	VH	L	10000 (51)	80 (12.5)	High commutating applications from large heavy duty motors and generators to less critical applications.
N48	0.0028 (71)	1.58	2000 (141)	VH	L	10000 (51)	80 (12.5)	Where excellent commutation is required and sustained high loads are present.
N6000	0.0026 (66)	1.55	2800 (197)	VH	L	8000 (41)	80 (12.5)	Low or variable humidity conditions and where long periods of light loading are a factor. Slight polishing action, also controls film in heavily loaded applications.

Electrographitic (continued)

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in² (kgf/cm²)	Con- tact Drop	Fric- tion	Surface Speed ft/min (m/sec)	Normal Current Density A/in ² (A/cm ²)	Description and Application Recommended for:
N66	0.0026 (66)	1.62	2800 (197)	VH	L	8000 (41)	80 (12.5)	Where a slight polishing action may be required for controlling commutator bar marking or other contaminants.
N964	0.0021 (53)	1.60	3400 (239)	VH	М	8000 (41)	80 (12.5)	Low/variable humidity conditions and where long periods of light loading are a factor.
R20X1	0.0004 (10)	1.70	3000 (211)	Н	М	4000 (20)	80 (12.5)	Slip rings of wound rotor or synchronous machines used in low humidity or difficult filming conditions.
SA35	0.0021 (53)	1.54	2400 (169)	VH	L	8000 (41)	80 (12.5)	Where intermediate commutating ability is required.
SA45	0.0026 (66)	1.49	1450 (102)	VH	L	10000 (51)	80 (12.5)	Where excellent commutating ability is required. Used widely on industrial motors and generators.
SA4542	0.0026 (66)	1.51	1525 (107)	VH	М	8000 (41)	80 (12.5)	Where severe operating conditions such as transient overloads and improper machine adjustment are present and a slight polishing action is needed.
SA4548	0.0025 (64)	1.50	1500 (106)	VH	L	8000 (41)	80 (12.5)	Applications where SA45 would normally be used but where increased filming ability is required.
SA50	0.0028 (71)	1.49	1000 (70)	VH	L	10000 (51)	80 (12.5)	Machines where superior commutation is the primary requirement.
T300	0.0008 (20)	1.72	4000 (282)	Н	М	7000 (36)	80 (12.5)	24 to 80 volt DC machines where low humidity and high loads are present.
T416	0.0030 (76)	1.62	2700 (190)	VH	М	8000 (41)	80 (12.5)	Where excellent commutating and riding properties are required. Applied on high-voltage machines used in steel mills, paper mills, dragline generators, etc.
T500	0.0030 (76)	1.57	2000 (141)	VH	М	8000 (41)	80 (12.5)	Heavily loaded, difficult to commutate machines. Long life at lower humidity.
T508	0.0022 (56)	1.68	4300 (303)	VH	М	8000 (41)	80 (12.5)	General industrial and transportation applications.
T550	0.0029 (74)	1.63	3900 (275)	VH	М	8000 (41)	80 (12.5)	The plastics industry where good filming and excellent commutation is necessary.
T563	0.0030 (76)	1.58	2400 (169)	VH	М	8000 (41)	80 (12.5)	Wide variety of industrial applications where excellent commutation is necessary.
T566	0.0030 (76)	1.62	2500 (176)	VH	М	8000 (41)	70 (11)	Contaminated atmospheres seen in paper mills and where load requirements are high.
T573	0.0027 (66)	1.62	3100 (218)	VH	М	7000 (36)	80 (12.5)	Wide variety of industrial applications.
T583	0.0022 (56)	1.67	4100 (289)	VH	М	6000 (30)	80 (12.5)	Medium duty industrial and general traction motor application.
T606	0.0035 (76)	1.73	3600 (253)	VH	М	7000 (36)	70 (11)	Where threading is a concern in contaminated atmospheres and to minimize friction chatter.
T652	0.0030 (76)	1.62	2700 (190)	VH	М	8000 (41)	80 (12.5)	Where low humidity and selelctivity are concerns.
T659	0.0030 (76)	1.63	4000 (282)	VH	М	8000 (41)	80 (12.5)	Low friction and good commutation are primary concerns.
T758	0.0027 (66)	1.68	4700 (331)	VH	М	8000 (41)	80 (12.5)	High-speed transit car motors.

Electrographitic (continued)

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in² (kgf/cm²)	Con- tact Drop	Fric- tion	Surface Speed ft/min (m/sec)	Normal Current Density A/in ² (A/cm ²)	Description and Application Recommended for:
T825	0.0025 (58)	1.69	4200 (359)	VH	L	10000 (51)	80 (12.5)	Off highway vehicle traction motors under severe conditions of high temperature, low humidity, and heavy loads.
T869	0.0013 (36)	1.71	4000 (282)	VH	М	6000 (30)	70 (11)	Brass collector rings and medium-duty commutating service.
Т900	0.0020 (51)	1.68	4500 (317)	VH	М	8000 (41)	80 (12.5)	Where excellent low humidity and high brush temperature are primary concerns. Used extensively in traction motor service.
Т959	0.0024 (61)	1.68	4200 (296)	VH	М	8000 (41)	80 (12.5)	Traction motors which require superior commutation and low friction under various duty cycles and low humidity conditions.

Graphite

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in² (kgf/cm²	Con- tact Drop	Fric- tion	Surface Speed ft/min (m/sec)	Normal Current Density A/in ² (A/cm ²)	Abra sive ness	Description and Application Recommended for:
634	0.0007 (18)	1.28	750 (53)	VH	L	16000 (81)	65 (10)	М	High-speed slip rings on turbo alternators around the world.
Н	0.0010 (28)	1.36	1300 (92)	VH	М	12000 (61)	55 (8.5)	М	High-speed service where scrubbing action required.
HRG	0.0025 (64)	1.90	3000 (211)	VH	L	8000 (41)	65 (10)	Н	Industrial application that require a high polishing action.
K816	0.00036 (13)	1.83	2900 (204)	М	М	8000 (41)	65 (10)	М	Contaminated atmospheres for light loads and low-voltage machines.
PH	0.0400 (1016)	1.61	3300 (232)	VH	L	6000 (30)	40 (6.2)	L	Where a very high contact drop is primary consideration. Recommended for FHP motors with difficult commutating characteristics.
R310	0.0022 (76)	1.75	3600 (253)	VH	М	5000 (25)	45 (7)	L	Where exceptional riding and commutating ability is required. Successful on 3600 RPM turbo exciters up to 60 kw size, motors and generators in paper mill, steel mill service.
R312	0.0020 (51)	1.73	2400 (169)	VH	М	6000 (30)	55 (8.5)	L	Similar to R310 but with greater load capacity.
R318	0.0007 (25)	1.75	3200 (225)	Н	М	10000 (51)	65 (10)	М	Steel slip rings of alternators and synchronous motors.
R320	0.0013 (33)	1.35	1000 (70)	Н	М	12000 (61)	65 (10)	М	Where selectivity is primary concern. This grade has a very low coefficient of friction for high-speed service.
R884	0.0220 (762)	1.62	3000 (211)	VH	М	6000 (30)	55 (8.5)	М	Small, difficult to commutate machines such as amplidynes and non-commutating pole motors used with SCR packages.
T341	0.0020 (51)	1.79	4500 (317)	VH	М	6000 (30)	55 (8.5)	L	Contaminated environments to reduce threading and improve brush life.
Т990	0.0025 (64)	1.83	3700 (260)	VH	М	8000 (41)	80 (12.5)	М	Battery truck motors where superior commutating ability is required.

Metal Graphite

Brush Grade	Spec. Res. Ω-in. (μΩ-m)	Dens. g/cm³	Trans. Strength Ibf/in² (kgf/cm²	Con- tact Drop	Fric- tion	Surface Speed ft/min (m/sec)	Normal Current Density A/in² (A/cm²)	Abra siven ess	% Met al	Description and Application Recommended for:
537	0.0003 (8)	2.77	3200 (225)	VH	М	6000 (30)	100 (15.5)	L	48	24 – 50 volt DC motors and AC motor collector rings where low humidity protection is required.
AJT	0.00016 (4)	3.00	4700 (331)	L	L	6000 (30)	100 (15.5)	L	40	High current/low voltage motors exposed to high altitudes.
ANK	0.000006 (0.2)	4.95	3500 (246)	L	L	6000 (30)	150 (23.3)	М	75	Where high copper content and low humidity protection is needed.
AYK	0.000044 (1.1)	2.64	5000 (352)	М	М	4000 (20)	100 (15.5)	L	40	Applications of wound rotor motor rings up to 100 APSI.
F83	0.0450 (1143)	2.02	2300 (162)	VH	L	4000 (20)	40 (6.2)	L	25	Appliance motors and other FHP applications and suitable for low current densities.
L4	0.000014 (0.38)	4.57	3100 (218)	L	н	5000 (25)	125 (19.4)	М	75	Low-voltage motors, particularly switch and signal equipment. Also used on plating generators up to 15 volt and on brass slip rings of induction motors.
M2650	0.000125 (2.79)	2.80	3500 (246)	L	L	7000 (36)	100 (15.5)	L	50	Slip rings and low voltage motors (24 – 72 volts).
M2665	0.000025 (0.76)	3.50	3800 (268)	L	VL	6000 (30)	110 (17)	L	65	Slip rings and low voltage motors (6 – 24 volts).
M2675	0.000008 (0.23)	4.25	3200 (225)	L	L	6000 (30)	125 (19.4)	М	75	Slip rings and low voltage motors (6 – 24 volts). Also can be used on slip ring applications when higher current density is needed.
M2688	0.000015 (0.38)	5.40	8000 (563)	L	L	6000 (30)	150 (23.3)	М	88	Plating generators up to 15 volts and conductor rolls.
M407	0.000008 (0.2)	5.10	2400 (169)	L	М	4500 (23)	150 (23.3)	L	75	Where very low contact drop, and low friction are required. Also used on controllers and control equipment.
M540	0.000015 (0.38)	5.40	8300 (584)	L	Н	5000 (25)	140 (21.7)	М	85	Low-voltage machines and grounding brushes.
M5N	0.000012 (0.3)	5.91	6000 (422)	L	М	4000 (20)	150 (23.3)	М	96	Low voltage, high current applications where long brush life and minimum collector wear is desired.
M785	0.00027 (7)	3.20	3000 (211)	L	Н	6000 (30)	100 (15.5)	L	50	Low-voltage DC motors and generators in the 24 to 72 volt range and on brass slip rings of induction motors.

Grade Properties Tabulation Disclaimer

The information contained in this tabulation of material properties is based on experimental and / or historical trends and indicates guidelines for typical lots of materials. Choosing the correct grade for a particular application should not be based solely on physical properties. No guarantee of these properties is given or implied.

Brush Request Form

Six Steps to Identify a Carbon Brush

Greenville, SC 29607 Identification and Nameplate Information Describe The Shunt Motor ☐ Generator Slip Ring Manufacturer Model # Serial # Total # Brushes HP/KW RPM Commutator Slip Ring Volts Amps Actual Running Amps Shunt Location(s) _____ Shunt Length (in) Describe The Application Commutator Diameter (inches) Slip Ring Synchronous ☐ Steel Ring ☐ Wound Rotor ☐ Bronze Ring Diameter _____ (inches) Tamed Rivet Insulated Measuring Length Application ☐ General Industrial ☐ Steel Mill ☐ Papermill ☐ Elevator ☐ Mining ☐ Power Gen ☐ Other Describe The Brush Top Describe The Brush Circle Any Special Features Top Bevel Clip Bot Bevel Other (for example: no pad or clip, convex, channel, etc.) Describe Describe The Terminal Use calipers to measure (T), (W), and (L). Notice differences in SR and Comm style brushes Thickness (T) Tube Crimped Flag Yoke **Button Eared** Commutator Slip Ring Width (W) Circle Terminal and Measure Length (L) I.D. of Hole or Fork (in) Solid Plytek Triply **Quick Disconnect** EZ Terminal

Advanced Materials & Technology

www.morganamt.com

Fill out the form and fax to 205.252.3600. Then call a

Customer Service Representative at 800.858.3366.

																	E	lec		rap			ade	s		
Ар	plications	234	AY	۵	DE8	DE25	DE7000	DE9000	L932	L944	9967	N19	05N	N44	N48	N6000	99N	N964	SA35	SA45	SA4542	SA4548	SA50	T300	T416	T500
	light load											•														
Paper Mills	moderate load											•			•						•					
raper wills	heavy loads													•	•		•						•		•	
	contamination								•	•	•						•				•			•	•	
	auxilary motors											•		•			•								•	
	collector rolls																									Г
	dc cranes																•									
Ctool Millo	generators													•						•					•	
Steel Mills	looper motors													•						•						
	low voltage generators	10000000			335555555	1,000,000,000	10000000	1000000000		1,00,0000	10000000	11100110011		110030000	5150001001	100100000	100000000000000000000000000000000000000	1010100010	10000000	100000000	1110000000	9501155016	510051505		11001000	Г
	rolling mill motors														•		•				•				•	
	contamination	41.000.000	00000000	arasst555	estriiii		AND THE PROPERTY OF		•	•	•	10000000	a outstillis	on protection of the contraction	2110000000	vee#55113	DUST TE	ostatiti	Augs:(858)	00000000	2253355	vaetusistii	ansenteit	2005555		
1222	excavator generators														•	•		•								
Mining	excavator motors		40018883	40:031535			1023E		00333115	J20000000	40122222	122515551	40.000000	enot SSSS	and0121	•		101535515	1222153B	•	100000000000000000000000000000000000000	econstilli		105115115	11000000	1
	generators											•				•						•				
Elevators	hoist motors																•									
	exciter generators											•														
Power	hydroelectric		•	•			818018								81181181					100 (00)						
Generation	steam turbine slip rings																									
	wind generators																									
	light loads																									
	moderate load	•															•		•	•		•				
Industrial	heavy loads																•						•			
	contamination								•		•										•					
	alternator																_									H
Railroad	grid blower motor	er motor																								
	light rail																									ľ
	traction motor						•	•																		
0"	alternators																									
Off Highway	grid blowers																									
	wheelmotors					•																				
	annealers					1000000	20120212		10100010			Hence	1001000100		81888888	100100010		551455511	101000101	100100000	251201202	\$200 BEST 188			11000000	
	container cranes																			•						
	electric vehicle pump	Inerdnes	Meterr	Estasassa	- Contractors	Manatana	nessiste.	tossasas	Betseetee	Hasassali	nglessee	Beerens	1000000000	messessi	Steenton	nannasins	Recircon	0.086.000010	SSSSSSSS	100100000	nistoroni	Sansanni	Ressiles	•	Heseses	10000
	electric vehicle traction																							•		
	grounding	(800000000	1 100000000	I PROGRESS	0.0000000000000000000000000000000000000	18588555		0.0000000000000000000000000000000000000	80000000	195805559	051505500	11000100011	9 119 119 119 119 119 119 119 119 119 1	F183355555		NOSHSSINS	100000000	000000000	500000000	1000000000	PURSONSON	40811508115	535555555			
Misc	plastics															•										
	rotary conversion																									L
	shears (hi inrush)														•								•			
	ski lifts															•									•	
	slip rings - bronze		•																							
	slip rings - steel		•	•																						
	wound rotor motors																									П

Application / Grade Matrix Disclaimer

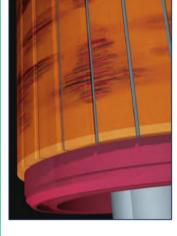
The applications of brushes to all types of electrical machines is numerous and varied. This grade / application matrix is intended to give general recommendation guidelines for many of those applications. These recommendations are the product of intensive research, development, and experience of our Application Engineers in both the laboratory and in the field and cover a wide range of service conditions. This process is a continuous development program and we are always striving to recommend the best grade for each application.

G														Grad APS				Meta	80 t	to 1	50 A			s					
T508	T550	T563	T566	T573	T583	T606	T652	T758	T825	T869	T900	T959	634	R310	R312	R318	R320	T341	T990	537	L4	M2650	M2665	M2675	M2688	M407	M5N	Application	ons
														•	•			•	•									light load	
3200000			•		100000000	10000000	20 4001120001	20000000	0 100 1100		000000000000000000000000000000000000000		20010000		100000000000000000000000000000000000000		101000000			10000000	Multipolitic	110000000	100100200	000000000		1000000	100000000	moderate load	Damas Milla
			•	•																								heavy loads	Paper Mills
																												contamination	
		•		•	•																							auxilary motors	
		•																			•				•		•	collector rolls	
		•		•	•																							dc cranes	
																												generators	Steel Mills
																					•							looper motors	Steel Wills
																					•	•	•					low voltage generators	
		•		•	•																							rolling mill motors	
																												contamination	
							•																					excavator generators	Mining
																												excavator motors	g
															•			•										generators	Elevators
			6300313000																	1000000								hoist motors	
																												exciter generators	
								<u> </u>					•			•												hydroelectric	Power
													•			•	•											steam turbine slip rings	Generation
		ECHECK LOG										SCHOOLS PRINCED STREET, STREET	wind generators																
						•								•	•			•										light loads	
000101	110010011	•	55015100	9 00 0000000000000000000000000000000000	00001000	0.00000000	20000000	10100000	0 100011201	010100010	0.0000000	100000000000000000000000000000000000000	100000000				001000000		100000000	0000000	100000000	10000000	000000000	100010010	10100000	#10001000		moderate load	Industrial
				•	•																							heavy loads	
5103110	•	NIN NIN NIN				1000000	ORIGINA CO	ORIGINAL SERVICE			e annon						BERTHER STREET		10000000000	E CONTROL OF	BEREER	000000	000000000000000000000000000000000000000		entrone.		4000000	contamination	
																•												alternator	
•	150010000	10010033100		3838333333	1000000	183133333	13 20 20 20 20 20 20 20 20 20 20 20 20 20	•	81 58 58 58 58 58 58 58 58 58 58 58 58 58	3555555	8188888888	18600000	3 20010000	38333333	100000000		88888888	15555555	18001008000	01000000			88388888		60000000	#1001000	185155555	grid blower motor	Railroad
								•																				light rail	
		000000000000000000000000000000000000000		0 0000000000000000000000000000000000000	10000000					2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	•	•	100000000000000000000000000000000000000								HISTORY OF			2012/02/02/03			4000000	traction motor	
																•	•											alternators	
•					•																							grid blowers	Off Highway
•									•																			wheelmotors	
																								•	•		•	annealers	
		•			•																							container cranes	
9999									1 000 000 000										•			188828						electric vehicle pump	
																				•		•						electric vehicle traction	
																					•			•		•	•	grounding	
	•																											plastics	Misc
																						•	•			•		rotary conversion	
																												shears (hi inrush)	
																												ski lifts	
											81 183 188									•								slip rings - bronze	
										•	3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3					•				•								slip rings - steel	
			I											1		•				•	•		•	•				wound rotor motors	

There is a total cost consideration of commutators / slip rings and brushes when making decisions to apply a brush material. A balance between good brush life versus commutator or slip ring wear that must be calculated and should be the final basis for grade selection.

There is no guarantee given or implied in these recommendations.

COMMUTATOR SURFACE CONDITIONS


Satisfactory Conditions

surface is one of the many normal conditions often seen on a well functioning machine. Film tone is dependent on the brush grade **Light Film** - over the entire commutator and current density.

Dark Film - if uniform over the entire commutator surface is acceptable. This condition can be the result of a high filming brush grade, higher current densities or the presence of chemical vapor contamination.

pressure, unequal magnetic fields and such as commutator roundness, brush contact Blotchy Film - this nonuniform filming condition is the most common appearance. The accumulated tolerances in the machine chemical vapors all contribute to this type of film development.

of armature coils per slot. This pattern is dependent on the machine design and Slot Bar Filming - repeating light and dark filming patterns related to the number usually not a function of the brush grade.

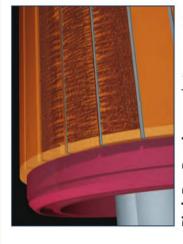
Concerned Conditions

transfer develops, this condition will progress Streaking - of only the film is not detrimental life are not at risk in this condition. If metal be dependent on current density or brush to the commutator. Brush and commutator into threading.

This type of filming can

Bright Spots - a freckled appearance of the film usually caused by machines that are subjected to frequent overload cycles. If the bright spots disturb only the film, a machine can operate for long periods of time with this condition. If severe metal transfer begins, the bright spots could progress to dangerous bar ourning or film stripping.

Bar Burning - is the erosion of the trailing of the machine or a poor commutating brush edge of the commutator bar. Failed machine components, maladjusted electrical symmetry this condition can cause severe commutator damage or a flashover. can result in bar burning. If not corrected,



erosion of every second, third, or fourth brush design or electrical adjustment of the machine can cause this condition. This Slot Bar Burning - results in commutator bar depending on the winding design of condition severely damages the commutator Improper brush material, and reduces brush life. the armature.

Unsatisfactory Conditions

Threading - is machining of the commutator by copper particles in the brush face. The excessive copper transfer occurs due to low spring pressure, light loading or contamination. These particles are trapped in the porous carbon brush and work harden, creating a tool that machines or gauls the commutator surface. The machine can operate for long periods of time with this condition, but reduced commutator and brush life will be experienced.

Pitch Bar Burning - results in commutator bars being eroded in a pattern related to 1/2 the number of brush arms, progressing into a pattern equal to the number of brush arms. This condition is caused by a cyclic mechanical or electrical disturbance such as an unbalanced armature, misaligned shafts, bent shaft, bad bearings, weak foundation, failed equalizers or a poor riser connection. If not corrected this condition will result in a flashover.

wear, the width of the brush, that is exhibited on the commutator. Excessive abrasive dust in the atmosphere or an abrasive brush can cause this condition. Extreme light spring pressure (below 1.5 psi) can also cause this condition. Proper brush applications and filtering the air on force ventilated motors can reduce the commutator wear. Some people call this "Ridging" because of the resulting ridges on each side of the groove.

Copper Drag - occurs when high energy transfers copper in a molten state. These particles become coated by contaminants from the surrounding environment or the brush treatment and do not oxidize properly to form the film on the commutator surface. These particles accumulate at the edge of the bar, eventually shorting across the insulating mica. This condition needs to be addressed immediately when discovered or serious damage may occur. Chamfering the commutator bar edges is necessary to stop the progression of this condition.

Công ty TNHH Trí Lập

Phòng 602+604, tòa nhà Vinahud Đường Trung Yên 9, Trung Hòa Cầu Giấy, Hà Nội, Việt Nam

T (84-24) 6682 0666/ 6684 0666 F (84-24) 3226 2435

TriLAP Company Limited

Suite 602+604, Vinahud Building Trung Yen 9 Road, Trung Hoa Ward Cau Giay Dist., Ha Noi, Viet Nam

www.trilap.com.vn Hotline: 098 987 8833/ 0988 304 086

